Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add filters

Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.06.565781

ABSTRACT

The COVID-19 pandemic has shown the need to develop effective therapeutics in preparedness for further epidemics of virus infections that pose a significant threat to human health. As a natural compound antiviral candidate, we focused on -dystroglycan, a highly glycosylated basement membrane protein that links the extracellular matrix to the intracellular cytoskeleton. Here we show that the N-terminal fragment of -dystroglycan (-DGN), as produced in E. coli in the absence of post-translational modifications, blocks infection of SARS-CoV-2 in cell culture, human primary gut organoids and the lungs of transgenic mice expressing the human receptor angiotensin I-converting enzyme 2 (hACE2). Prophylactic and therapeutic administration of -DGN reduced SARS-CoV-2 lung titres and protected the mice from respiratory symptoms and death. Recombinant -DGN also blocked infection of a wide range of enveloped viruses including the four Dengue virus serotypes, influenza A virus, respiratory syncytial virus, tick-borne encephalitis virus, but not human adenovirus, a non-enveloped virus in vitro. This study establishes soluble recombinant -DGN as a broad-band, natural compound candidate therapeutic against enveloped viruses.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2421432.v1

ABSTRACT

For improved safety, children are vaccinated with a lower dose and extended interval for mRNA COVID-19 vaccines; however, whether there is protection before dose 2 is unknown. We recruited 113 children receiving BNT162b2 primary vaccination during an Omicron wave. After dose 1, 96% had detectable anti-Spike(S) IgG and 100% had S-reactive T cells; those with both had a lower risk of symptomatic infection compared to those with undetectable anti-S IgG [RR 0.19 (95% CI; 0.06, 0.59)]. This suggests that dosing can be extended without risk of insufficient early protection.


Subject(s)
COVID-19 , Addison Disease
3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1629079.v1

ABSTRACT

Remarkable potency has been demonstrated for mRNA vaccines in reducing the global burden of the ongoing COVID-19 pandemic. This vaccine platform has been extended to encode an alphavirus replicase that self-amplifies the full length mRNA and SARS-CoV-2 spike (S) transgene (self-amplifying mRNA or sa mRNA). However, early phase clinical trials of sa-mRNA COVID-19 vaccine candidates have questioned the potential of this platform to develop potent vaccines. We examined the immune gene response to a candidate sa-mRNA vaccine against COVID-19, and compared our findings to the host response to other forms of vaccines. In blood samples from healthy volunteers that participated in a phase I/II clinical trial, greater induction of transcripts involved in Toll-like receptor (TLR) signalling, antigen presentation and complement activation at 1 day post-vaccination was associated with higher anti-S antibody titers. Conversely, transcripts involved in T-cell maturation at day 7 post-vaccination informed the magnitude of eventual anti-S T-cell responses. The transcriptomic signature for ARCT-021 vaccination strongly correlated with live viral vector vaccines, adjuvanted vaccines and BNT162b2. Correlation with live attenuated vaccines was weaker. Our findings suggest the potential for sa-mRNA to be further developed to be among the most potent forms of vaccines in our arsenal to prevent infectious diseases.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.14.21264981

ABSTRACT

Protection offered by COVID-19 vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S vaccinated individuals (n=55) who were either primed with Ad26.COV2.S only (n=13), or boosted with a homologous (Ad26.COV2.S, n=28) or heterologous (BNT162b2, n=14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n=16) or double (n=44) dose of BNT162b2. We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both, Spike-specific humoral and cellular immunity in Ad26.COV2.S vaccinated. In contrast, the impact of homologous boost was quantitatively minimal in Ad26.COV2.S vaccinated and Spike-specific antibodies and T cells were narrowly focused to the S1 region. Although a direct association between quantity and quality of immunological parameters and in vivo protection has not been demonstrated, the immunological features of Spike-specific humoral and cellular immune responses support the utilization of a heterologous strategy of vaccine boost in individuals who received Ad26.COV2.S vaccination.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.01.21259831

ABSTRACT

BackgroundThe pandemic of coronavirus disease-19 (Covid-19) continues to afflict the lives and livelihoods of many as global demand for vaccine supply remains unmet. MethodsPhase 1 of this trial (N=42) assessed the safety, tolerability and immunogenicity of ascending levels of one-dose ARCT-021, a self-amplifying mRNA vaccine against Covid-19. Phase 2 (N=64) tested two-doses of ARCT-021 given 28 days apart. Both young and older adults were enrolled. The primary safety outcomes were local and systemic solicited adverse events (AEs) reported immediately and up to 7 days post-inoculation and unsolicited events reported up to 56 days after inoculation. Secondary and exploratory outcomes were antibody and T cell responses to vaccination, respectively. ResultsARCT-021 was well tolerated up to one 7.5 g dose and two 5.0 g doses. Local solicited AEs, namely injection-site pain and tenderness, as well as systemic solicited AEs, such as fatigue, headache and myalgia, were more common in ARCT-021 than placebo recipients, and in younger than older adults. Seroconversion rate for anti-S IgG was 100% in all cohorts except for the 1 g one-dose in younger adults and the 7.5 g one-dose in older adults, which were each 80%. Neutralizing antibody titers increased with increasing dose although the responses following 5.0 g and 7.5 g ARCT-021 were similar. Anti-S IgG titers overlapped with those in Covid-19 convalescent plasma. ARCT-021 also elicited T-cell responses against the S glycoprotein. ConclusionTaken collectively, the favorable safety and immunogenicity profiles support further clinical development of ARCT-021.


Subject(s)
COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.29.450293

ABSTRACT

Background: Antibodies and T cells cooperate to control virus infections. The definition of the correlates of protection necessary to manage the COVID-19 pandemic, require both immune parameters but the complexity of traditional tests limits virus-specific T cell measurements. Methods: We test the sensitivity and performance of a simple and rapid SARS-CoV-2 Spike-specific T cell test based on stimulation of whole blood with peptides covering the SARS-CoV-2 Spike protein followed by cytokine (IFN-{gamma}, IL-2) measurement in different cohorts including BNT162b2 vaccinated (n=112; 201 samples), convalescent asymptomatic (n=62; 62 samples) and symptomatic (n=68; 115 samples) COVID-19 patients and SARS-CoV-1 convalescent individuals (n=12; 12 samples). Results: The sensitivity of the rapid cytokine whole blood test equates traditional methods of T cell analysis (ELISPOT, Activation Induced Markers). Utilizing this test we observed that Spike-specific T cells in vaccinated preferentially target the S2 region of Spike and that their mean magnitude is similar between them and SARS-CoV-2 convalescents at 3 months after vaccine or virus priming respectively. However, a wide heterogeneity of Spike-specific T cell magnitude characterizes the individual responses irrespective of the time of analysis. No correlation between neutralizing antibody levels and Spike-specific T cell magnitude were found. Conclusions: Rapid measurement of cytokine production in whole blood after peptide activation revealed a wide dynamic range of Spike-specific T cell response after vaccination that cannot be predicted from neutralizing antibody quantities. Both Spike-specific humoral and cellular immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.


Subject(s)
Severe Acute Respiratory Syndrome , Tumor Virus Infections , COVID-19
7.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3796533

ABSTRACT

RNA vaccines against Covid-19 have demonstrated ~95% efficacy in Phase III clinical trials. Although complete vaccination consisted of two-doses, the onset of protection for both licensed RNA vaccines was observed as early as 12 days after a single dose. The adaptive immune response that coincides with this onset of protection could represent the necessary elements of immunity against Covid-19. Herein, we tracked the early adaptive immune responses after Covid-19 RNA vaccination, in a cohort of 20 healthcare workers. Our findings suggest that early T cell and binding antibody responses, rather than either receptor-blocking or virus neutralizing activity, induced early protection against Covid-19.Funding: This study was partially funded through a generousdonation from The Hourglass to support Covid-19 research in ViREMiCS. SK receives salary support from the Transition Award, RdA receives funding from the Open Research Fund Young Investigator Award, JGL and EEO receive salary support from the Clinician Scientist Award, and AB receives salary support from the Singapore Translational Research Award, all administered by the National Medical Research Council of Singapore.Conflict of Interest: Duke-NUS Medical School is in partnership with Arcturus Therapeutics to develop a self-replicating RNA vaccine against Covid-19, with EEO as the principal investigator. No monetary or personal benefits are derived from this partnership.Ethical Approval: This study was approved by the SingHealth Centralized Institutional Review Board (CIRB/F2021/2014). Healthcare workers (HCWs) from the Singapore Health Services institutions whowere eligible for Covid-19 vaccination were invited to participate in this study, and written informed consent was obtained.


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.03.280727

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense single-stranded virus approximately 30 kb in length, causes the ongoing novel coronavirus disease-2019 (COVID-19). Studies confirmed significant genome differences between SARS-CoV-2 and SARS-CoV, suggesting that the distinctions in pathogenicity might be related to genomic diversity. However, the relationship between genomic differences and SARS-CoV-2 fitness has not been fully explained, especially for open reading frame (ORF)-encoded accessory proteins. RNA viruses have a high mutation rate, but how SARS-CoV-2 mutations accelerate adaptation is not clear. This study shows that the host-genome similarity (HGS) of SARS-CoV-2 is significantly higher than that of SARS-CoV, especially in the ORF6 and ORF8 genes encoding proteins antagonizing innate immunity in vivo . A power law relationship was discovered between the HGS of ORF3b, ORF6, and N and the expression of interferon (IFN)-sensitive response element (ISRE)-containing promoters. This finding implies that high HGS of SARS-CoV-2 genome may further inhibit IFN I synthesis and cause delayed host innate immunity. An ORF1ab mutation, 10818G>T, which occurred in virus populations with high HGS but rarely in low-HGS populations, was identified in 2594 genomes with geolocations of China, the USA and Europe. The 10818G>T caused the amino acid mutation M37F in the transmembrane protein nsp6. The results suggest that the ORF6 and ORF8 genes and the mutation M37F may play important roles in causing COVID-19. The findings demonstrate that HGS analysis is a promising way to identify important genes and mutations in adaptive strains, which may help in searching potential targets for pharmaceutical agents.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.03.280446

ABSTRACT

A self-transcribing and replicating RNA (STARR) based vaccine (LUNAR-COV19) has been developed to prevent SARS-CoV-2 infection. The vaccine encodes an alphavirus-based replicon and the SARS-CoV-2 full length spike glycoprotein. Translation of the replicon produces a replicase complex that amplifies and prolong SARS-CoV-2 spike glycoprotein expression. A single prime vaccination in mice led to robust antibody responses, with neutralizing antibody titers increasing up to day 60. Activation of cell mediated immunity produced a strong viral antigen specific CD8+ T lymphocyte response. Assaying for intracellular cytokine staining for IFN-gamma; and IL-4 positive CD4+ T helper lymphocytes as well as anti-spike glycoprotein IgG2a/IgG1 ratios supported a strong Th1 dominant immune response. Finally, single LUNAR-COV19 vaccination at both 2 microgram and 10 microgram doses completely protected human ACE2 transgenic mice from both mortality and even measurable infection following wild-type SARS-CoV-2 challenge. Our findings collectively suggest the potential of Lunar-COV19 as a single dose vaccine.


Subject(s)
COVID-19
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.26.115832

ABSTRACT

Memory T cells induced by previous infections can influence the course of new viral infections. Little is known about the pattern of SARS-CoV-2 specific pre-existing memory T cells in human. Here, we first studied T cell responses to structural (nucleocapsid protein, NP) and non-structural (NSP-7 and NSP13 of ORF1) regions of SARS-CoV-2 in convalescent from COVID-19 (n=24). In all of them we demonstrated the presence of CD4 and CD8 T cells recognizing multiple regions of the NP protein. We then show that SARS-recovered patients (n=23), 17 years after the 2003 outbreak, still possess long-lasting memory T cells reactive to SARS-NP, which displayed robust cross-reactivity to SARS-CoV-2 NP. Surprisingly, we observed a differential pattern of SARS-CoV-2 specific T cell immunodominance in individuals with no history of SARS, COVID-19 or contact with SARS/COVID-19 patients (n=18). Half of them (9/18) possess T cells targeting the ORF-1 coded proteins NSP7 and 13, which were rarely detected in COVID-19- and SARS-recovered patients. Epitope characterization of NSP7-specific T cells showed recognition of protein fragments with low homology to "common cold" human coronaviruses but conserved among animal betacoranaviruses. Thus, infection with betacoronaviruses induces strong and long-lasting T cell immunity to the structural protein NP. Understanding how pre-existing ORF-1-specific T cells present in the general population impact susceptibility and pathogenesis of SARS-CoV-2 infection is of paramount importance for the management of the current COVID-19 pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL